Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Площадь треугольника равна a*h/2, где h -
высота треугольника, а - сторона треугольника, к которой проведена высота.
SABC=AC*BD/2
AD=DC=AC/2=12/2=6 (по
свойству равнобедренного треугольника высота является
медианой)
Тогда, по
теореме Пифагора:
AB2=BD2+AD2
102=BD2+62
100=BD2+36
BD2=64
BD=8
SABC=AC*BD/2=12*8/2=48
Ответ: SABC=48
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=11, CK=20.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.
Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=16, DC=24, AC=25.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен
60°, а радиус окружности равен 6.
В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.

Комментарии:
(2022-05-12 09:27:42) : квадрат со стороной 8 см описан около окружности. найдите площадь прямоугольного треугольника с острым углом 30, вписанного в данную окружность
(2014-05-17 14:33:39) Администратор: Танюшка, спасибо, хорошее логичное решение. Опубликуем в скором времени.
(2014-05-17 14:29:36) танюшка: Можно решить через теорему Герона. Боковые стороны равны между собой и равны 10.Находим полупериметр: р=(10+10+12)/2=16.Подставляем данные в формулу: S=√16(16-10)*(16-10)*(16-12); S=√64*36 ; S=8*6=48