ОГЭ, Математика. Геометрия: Задача №D5F808 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D5F808

Задача №1038 из 1087
Условие задачи:

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.

Решение задачи:

Отрезок AC равен сумме отрезков AO и OC, OC - равен радиусу окружности, т.е.
OC=8,4/2=4,2. Найдем AO.
Проведем отрезок BO. BO - так же является радиусом окружности. AB - касательная к окружности, следовательно AB перпендикулярен BO (по свойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
AO2=42+4,22
AO2=16+17,64=33,64
AO=√33,64=5,8
AC=AO+OC=5,8+4,2=10
Ответ: 10

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №11BB1D

Один из острых углов прямоугольного треугольника равен 57°. Найдите его другой острый угол. Ответ дайте в градусах.



Задача №07AA72

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.



Задача №7AD11C

Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №6E857B

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.



Задача №176EA1

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84°. Найдите величину угла OMK. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика