Середина E стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 92° и 148°.
Вариант №1
Сумма углов любого выпуклого n-угольника равна (n-2)180, тогда сумма углов четырехугольника (4-2)180=360.
Т.е. ∠A+∠B+∠C+∠D=360
∠A+92°+148°+∠D=360°
∠A+∠D=120°
Треугольники AEB, BEC и ECD -
равнобедренные, т.к. стороны AE=EB=EC=ED.
Следовательно:
∠A=∠ABE
∠EBC=∠ECB
∠ECD=∠D
Использую сумму углов четырехугольника, запишем:
∠A+∠ABE+∠EBC+∠ECB+∠ECD+∠D=360°
Используя ранее полученные равенства, запишем:
∠A+∠A+2∠EBC+∠D+∠D=360°
2∠A+2∠EBC+2∠D=360°
∠A+∠EBC+∠D=180°
120°+∠EBC=180°
∠EBC=60°
Рассмотрим треугольник EBC.
По
теореме о сумме углов треугольника ∠BEC тоже равен 60°.
Следовательно треугольник EBC -
равносторонний (по
свойству).
Значит BC=BE=EC=8 (по
определению) и
8=BE=EC=AE (по условию задачи).
AD=AE+ED=8+8=16
Ответ: AD=16
Поделитесь решением
Присоединяйтесь к нам...
Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Найдите площадь треугольника, изображённого на рисунке.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 37°, угол ABC равен 25°. Найдите угол ACB. Ответ дайте в градусах.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.
Комментарии:
(2017-05-28 21:55:05) Администратор: Alissa, хорошее решение, я решил опубликовать его от Вашего имени. Спасибо!
(2017-05-19 21:22:32) Alissa: Очевидно, что АВСD- четырёхугольник,вписанный в окружность. Значит сумма противолежащих углов А+С=В+D=180 градусам.Тогда угол D=180-92=88,угол ЕСD=88.По условию угол С=148,тогда угол ВСЕ=148-88=60.И треугольник ВСЕ равносторонний и т.д