ОГЭ, Математика. Геометрия: Задача №52C267 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №52C267

Задача №237 из 1087
Условие задачи:

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MN - средняя линия треугольника ABC. Следовательно, MN=AK и MN||AK (по теореме о средней линии).
NK - тоже средняя линия, равна AM и параллельна AM.
Получается, что AM=MN=NK=KA, т.е. AMNK - ромб (по свойству ромба).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0CD22D

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №1EE527

В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.



Задача №45BF27

Площадь прямоугольного треугольника равна 983/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №A2AF25

Найдите площадь трапеции, изображённой на рисунке.



Задача №FD77A1

Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равносторонний (или правильный) треугольник - это треугольник, у которого все стороны равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика