В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
По условию задачи AB=BC=CA (т.к. треугольник ABC -
равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MN -
средняя линия треугольника ABC. Следовательно, MN=AK и MN||AK (по
теореме о средней линии).
NK - тоже
средняя линия, равна AM и параллельна AM.
Получается, что AM=MN=NK=KA, т.е. AMNK -
ромб (по
свойству ромба).
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.
В треугольнике ABC угол C равен 90°, sinB=5/8, AB=16. Найдите AC.
Найдите площадь трапеции, изображённой на рисунке.
В треугольнике ABC угол C равен 90°, BC=5, AC=2.
Найдите tgB.
Радиус вписанной в квадрат окружности равен 14√
Комментарии: