На стороне AC треугольника ABC отмечена точка D так, что AD=2, DC=13. Площадь треугольника ABC равна 75. Найдите площадь треугольника ABD.
Проведем высоту из вершины B.
Заметим, что это высота не только треугольника ABC, но и треугольника ABD.
Найдем высоту, используя формулу площади треугольника для треугольника ABC:
SABC=AC*h/2=(AD+DC)*h/2
75=(2+13)*h/2
75=15*h/2
75*2=15h
150=15h
h=10
Теперь применим эту же формулу для треугольника ABD:
SABD=AD*h/2=2*10/2=10
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.
Синус острого угла A треугольника ABC равен √
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.
Комментарии: