Диагональ прямоугольника образует угол 50° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Диагонали
прямоугольника равны и точкой пересечения делятся пополам (по
свойству прямоугольника).
Рассмотрим треугольник ABO (см. рисунок).
AO=BO (как мы только что выяснили).
Следовательно, треугольник ABO -
равнобедренный.
По первому
свойству равнобедренного треугольника:
∠OBA=∠OAB
По
теореме о сумме углов треугольника:
180°=∠AOB+∠OBA+∠OAB
180°=∠AOB+50°+50°
∠AOB=80°
Ответ: 80
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
Найдите тангенс угла
AOB.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
Сторона квадрата равна 40√2. Найдите радиус окружности, описанной около этого квадрата.
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
Комментарии: