ОГЭ, Математика. Геометрия: Задача №A77323 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем отрезки как показано на рисунке. Точка О - центр окружности
Рассмотрим треугольник AOD.
Данный треугольник прямоугольный, так как ∠ODA=90°
AD=OD=4, следовательно треугольник AOD - равнобедренный.
По теореме о сумме углов треугольника:
180°=∠ODA+∠DAO+∠AOD
180°=90°+∠DAO+∠AOD
90°=∠DAO+∠AOD
А так как ∠DAO=∠AOD (по свойству равнобедренного треугольника), то:
∠DAO=∠AOD=90°/2=45°.
Рассмотрим треугольники AOD и COD.
AD=CD=4
OD=4 - общая сторона.
∠ODA=∠ODC=90°
Тогда, по первому признаку равенства треугольников, данные треугольники равны.
Следовательно, ∠AOD=∠COD=45°
∠AOC=∠AOD+∠COD=45°+45°=90°
∠AOC - является центральным для окружности, следовательно градусная мера дуги, на которую опирается этот угол тоже равна 90°.
∠ABC - является вписанным в окружность и опирается на ту же дугу. Следовательно, по свойству угла, он равен половине градусной меры дуги. ∠ABC=90°/2=45°.
Ответ: 45

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B59A47

В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.



Задача №D893F0

В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.



Задача №5963C1

В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.



Задача №FBD6AC

Стороны AC, AB, BC треугольника ABC равны 32, 15 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №3D1628

На отрезке AB выбрана точка C так, что AC=12 и BC=3. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика