ОГЭ, Математика. Геометрия: Задача №3A84F2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Рассмотрим треугольник АОВ. Этот треугольник равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=25°
Ответ: /OCD=25°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FC9BAC

Найдите угол ABC равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной CD углы, равные 30° и 80° соответственно.



Задача №3A541C

Площадь прямоугольного треугольника равна 323/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №822163

Площадь равнобедренного треугольника равна 16003. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.



Задача №78B615

В треугольнике ABC угол C равен 45°, AB=62. Найдите радиус окружности, описанной около этого треугольника.



Задача №C85353

Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика