ОГЭ, Математика. Геометрия: Задача №04B0F5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Так как BM - медиана, значит AM=MC=AC/2=84/2=42
Рассмотрим треугольник MBC.
Т.к. BC=BM (по условию задачи), значит этот треугольник равнобедренный, BH - высота этого треугольника. По третьему свойству равнобедренного треугольника MH=HC=MC/2=42/2=21
Искомая AH=AC-HC=84-21=63
Ответ: AH=63

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D4D0BC

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=34.



Задача №44F7E4

Сторона равностороннего треугольника равна 23. Найдите радиус окружности, описанной около этого треугольника.



Задача №079233

Сторона BC параллелограмма ABCD вдвое больше стороны AB. Точка K — середина стороны BC. Докажите, что AK — биссектриса угла BAD.



Задача №47609C

На отрезке AB выбрана точка C так, что AC=14 и BC=36. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.



Задача №FFBC49

Площадь прямоугольного треугольника равна 183/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика