ОГЭ, Математика. Геометрия: Задача №00CECE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №00CECE

Задача №412 из 1087
Условие задачи:

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.

Решение задачи:

Рассмотрим треугольник AKD.
AK=AD (по условию задачи), следовательно данный треугольник равнобедренный.
По свойству равнобедренного треугольника ∠ADK=∠AKD
∠AKD=∠KDC (т.к. это накрест-лежащие углы).
Получается, что ∠ADK=∠AKD=∠KDC.
Следовательно DK - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04E377

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.



Задача №F67A78

В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.



Задача №E86375

В треугольнике АВС углы А и С равны 20° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №1F4EE8

Найдите площадь треугольника, изображённого на рисунке.



Задача №0AE203

Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.

Комментарии:


(2014-05-26 22:01:15) Администратор: Елена, потому, что ∠ADK=∠AKD, а ∠AKD=∠KDC.
(2014-05-26 18:30:51) Елена: почему ∠ADK=∠KDC.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика