ОГЭ, Математика. Геометрия: Задача №6E857B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №6E857B

Задача №362 из 1087
Условие задачи:

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.

Решение задачи:

Проведем отрезок ОС, как показано на рисунке.
Треугольники ACO и BCO - прямоугольные (по свойству касательной).
То есть углы CAO и CBO равны по 90° каждый.
OC - является биссектрисой для угла ACB (по свойству касательных), следовательно углы ACO и BCO равны 6°/2=3°.
По теореме о сумме углов треугольника, для треугольника ACO запишем:
180°=∠OAC+∠ACO+∠COA
180°=90°+3°+∠COA
∠COA=180°-90°-3°=87°
Аналогично, для треугольника BCO получим, что ∠COB=87°
∠AOB=∠COA+∠COB=87°+87°=174°
Проведем отрезок AB и рассмотрим треугольник ABO.
По теореме о сумме углов треугольника запишем:
180°=∠AOB+∠BAO+∠ABO
180°=174°+∠BAO+∠ABO
∠BAO+∠ABO=6°
ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=6°/2=3°
Ответ: ∠ABO=3°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №20DE0A

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.



Задача №04C840

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.



Задача №2A7231

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 74°. Ответ дайте в градусах.



Задача №7CF591

В параллелограмме KLMN точка E — середина стороны LM. Известно, что EK=EN. Докажите, что данный параллелограмм — прямоугольник.



Задача №211998

Сторона квадрата равна 38√2. Найдите радиус окружности, описанной около этого квадрата.

Комментарии:


(2015-04-06 22:51:21) Администратор: Елена, по сути это тоже самое, что и в решении, только я отталкиваюсь от суммы углов треугольника (что знает большинство школьников), Вы отталкиваетесь от суммы углов четырехугольника (что знают далеко не все школьники).
(2015-04-06 18:59:36) Елена: В четырёхугольнике АСВО уголы А и В прямые, угол С равен 6 градусов. Сумма углов четырёхугольника 360 градусов, значит угол О равен 174 градуса. А дальше по теореме о сумме углов треугольника...

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика