Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=26.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-150°=30° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin30°=ED/CD (sin30°=1/2 по
таблице)
1/2=ED/26
ED=26*1/2=13
sin(∠ABF)=AF/AB (по
определению)
sin45°=ED/AB
AB=ED/sin45° (sin45°=√2/2 по
таблице)

Ответ: 13√2
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла AOB.
Сторона равностороннего треугольника равна 2√
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.
Радиус вписанной в квадрат окружности равен 2√2. Найдите диагональ этого квадрата.




Комментарии:
(2023-03-08 21:03:16) Арина: Откуда мы узнали что синус угла ABF равен 45 градусам?