Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.
Введем обозначения ключевых точек и проведем высоту как показано на рисунке.
ABEC - квадрат, так как все углы прямые и все стороны равны.
Т.е. BE=EC=AB=54
tgα=BE/ED=2/9 (по
определению).
54/ED=2/9
ED=54*9/2=27*9=243
CD=CE+ED=54+243=297
Ответ: 297
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Найдите площадь трапеции, изображённой на рисунке.
Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).
На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=12, BC=18 и CD=8.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии: