Найдите тангенс угла AOB.
Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по
теореме Пифагора:
AO2=102+62
AO2=100+36=136
AO=√
AB2=82+22
AB2=64+4=68
AB=√
BO2=82+22
BO2=64+4=68
BO=√
По
теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(√
68=136+68-2√
-136=-2√
68=√
68=2*2√
17=√
17=17√
1=√
cos∠AOB=1/√
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(1/√
sin2∠AOB+1/2=1
sin2∠AOB=1-1/2
sin2∠AOB=1/2
sin∠AOB=1/√
tg∠AOB=sin∠AOB/cos∠AOB=(1/√
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
Какое наибольшее число коробок в форме прямоугольного параллелепипеда размером 30Х40Х50 (см) можно поместить в кузов машины размером 3Х2Х3,5 (м)?
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 4 м?
Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.
Найдите угол ABC. Ответ дайте в градусах.
Комментарии: