В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
Треугольник ABH
прямоугольный (т.к. AH -
высота).
Тогда cosB=BH/AB (по
определению).
AB=BC (по условию).
BC=BH+CH=52+13=65=AB
cosB=BH/AB=52/65=0,8
Ответ: 0,8
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
В треугольнике ABC AB=BC=53, AC=56. Найдите длину медианы BM.
В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 25°. Найдите величину угла OCD.
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
Комментарии: