В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
По
определению sinA=BC/AB=8/9
BC=8AB/9
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(8AB/9)2+AC2
AB2=64AB2/81+(2√
AB2-64AB2/81=4*17
(81AB2-64AB2)/81=68
17AB2=81*68
AB2=81*4=324
AB=18
Ответ: AB=18
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла AOB.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=64°. Ответ дайте в градусах.
Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.
Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.
Комментарии: