Катеты прямоугольного треугольника равны 5√
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=102+(5√
AB2=100+25*21=625
AB=25
Меньший угол лежит напротив меньшей стороны, 10<5√
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=39°. Найдите угол BCO. Ответ дайте в градусах.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
Площадь прямоугольного треугольника равна 8√




Комментарии: