Катеты прямоугольного треугольника равны 5√
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=102+(5√
AB2=100+25*21=625
AB=25
Меньший угол лежит напротив меньшей стороны, 10<5√
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
Сторона BC параллелограмма ABCD вдвое больше стороны AB. Точка K — середина стороны BC. Докажите, что AK — биссектриса угла BAD.
В прямоугольном треугольнике один из катетов равен 35, а угол, лежащий напротив него равен 45°. Найдите площадь треугольника.
В трапеции ABCD известно, что AD=4, BC=2, а её площадь равна 69. Найдите площадь треугольника ABC.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
Комментарии: