Катеты прямоугольного треугольника равны √
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=12+(√
AB2=1+15=16
AB=4
Меньший угол лежит напротив меньшей стороны, 1<√
Ответ: 0,25
Поделитесь решением
Присоединяйтесь к нам...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.
Найдите угол ABC. Ответ дайте в градусах.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 52°, угол ABC равен 13°. Найдите угол ACB. Ответ дайте в градусах.
Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).




Комментарии:
(2015-03-12 18:49:47) Администратор: Дима, если AB2=16, то AB=√
(2015-03-12 15:44:47) Дима: 4 откуда ?