Катеты прямоугольного треугольника равны √
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=12+(√
AB2=1+15=16
AB=4
Меньший угол лежит напротив меньшей стороны, 1<√
Ответ: 0,25
Поделитесь решением
Присоединяйтесь к нам...
На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.
AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 121°. Найдите угол C. Ответ дайте в градусах.
Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).




Комментарии:
(2015-03-12 18:49:47) Администратор: Дима, если AB2=16, то AB=√
(2015-03-12 15:44:47) Дима: 4 откуда ?