В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*9/10=0,9AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,9AB)2+(√
AB2-(0,9AB)2=19
AB2(1-0,92)=19
AB2*0,19=19
AB2=100
AB=10
Ответ: AB=10
Поделитесь решением
Присоединяйтесь к нам...
Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
Радиус вписанной в квадрат окружности равен 24√2. Найдите радиус окружности, описанной около этого квадрата.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.
Комментарии: