В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
По
определению синуса sinA=BC/AB => AB=BC/sinA=8/0,4=20.
Ответ: AB=20.
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 20, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=12 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=34.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.




Комментарии:
(2015-05-24 17:31:23) Администратор: Григорий, спасибо. Исправлено.
(2015-05-24 13:41:59) Григорий: в решении допущена ошибка при делении 8 на 0,4 получается 20, а не 5