Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
Проведем перпендикулярный отрезок от одной стороны
параллелограмма к другой через точку Е, как показано на рисунке.
Обозначим концы отрезка как F и G.
FG - высота параллелограмма, так как перпендикулярен двум сторонам (мы сами так его провели).
Площадь параллелограмма:
SABCD=FG*AD=FG*BC
Рассмотрим треугольники AEG и BEF:
AE=EB (по условию задачи).
∠AEG=∠BEF (они вертикальные).
∠GAE=∠FBE (они накрест-лежащие).
Тогда, по второму признаку равенства треугольников, данные треугольники равны.
Это означает, что EF=EG=FG/2
EF - высота треугольника CBE.
Воспользуемся формулой
площади треугольника через высоту и основание:
Ответ: 35
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна 15√
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Найдите площадь треугольника, изображённого на рисунке.
Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
Комментарии:
(2022-10-06 01:54:59) : в треугольнике авс с равен 114 сторонв ас и вс равны найдите угол в. ответ дайте в градусах