Площадь параллелограмма ABCD равна 180. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.
Проведем высоту
параллелограмма из угла ABC.
По первой формуле, площадь параллелограмма равна:
Sп=CD*h=180
h=180/CD
Для трапеции
высота, опущенная из угла BAD, будет равна высоте h
параллелограмма, так как она является
высотой и для параллелограмма.
Площадь трапеции:
AE=AB/2 (по условию задачи).
AE=AB/2=CD/2 (по первому свойству параллелограмма).
Подставляем все полученные значения:
Ответ: 135
Поделитесь решением
Присоединяйтесь к нам...
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Радиус окружности, описанной около квадрата, равен 38√2. Найдите радиус окружности, вписанной в этот квадрат.
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
Комментарии: