Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 3:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 41.
Пусть AD -
биссектриса, описанная в условии.
BC - сторона, равная 41.
Рассмотрим треугольник ADC.
Для этого треугольника CO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AC/CD=3/1
AC=3*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AB/BD=3/1
AB=3*BD
Складываем полученные равенства:
AC+AB=3*CD+3*BD
AC+AB=3(CD+BD), CD+BD=BC=41
AC+AB=3*41
AC+AB=123
PABC=AC+AB+BC=123+41=164
Ответ: 164
Поделитесь решением
Присоединяйтесь к нам...
Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Найдите тангенс угла AOB.
Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.
Комментарии: