Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.
∠GAE=∠BEA (т.к. они
накрест-лежащие)
∠GAE=∠BEA=∠BAE (т.к. AE -
биссектриса).
Получается, что треугольник ABE -
равнобедренный.
BF -
биссектриса, а по
свойству равнобедренного треугольника, она так же и
медиана и
высота.
Таким образом, получается, что треугольник ABF -
прямоугольный.
По
теореме Пифагора:
AB2=AF2+BF2
AB2=242+322
AB2=576+1024=1600
AB=40
Ответ: AB=40
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.
Синус острого угла A треугольника ABC равен . Найдите CosA.
В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.
Найдите площадь трапеции, изображённой на рисунке.
Комментарии:
(2015-03-16 21:01:20) Администратор: Евгений, тоже неплохой вариант.
(2015-03-16 19:46:19) Евгений: Проще: сумма углов А и В равна 180, а сумма половин углов равна 90, значит угол F равен 90.
(2014-11-02 11:11:00) Администратор: Эльвира, очень рад, что наш сайт помогает к подготовке, удачи на экзаменах!
(2014-11-02 09:12:26) Эльвира: Спасибо за вашу работу, за помощь в подготовке к итоговой аттестации.