Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны"? это утверждение верно по
первому признаку подобия.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Из прямоугольников, только у квадрата диагонали перпендикулярны (
свойство квадрата, которого нет у прямоугольников).
3) "У равностороннего треугольника есть
центр симметрии", это утверждение неверно. Есть три
оси симметрии, совпадающих с любой из
высот
равностороннего треугольника.
Поделитесь решением
Присоединяйтесь к нам...
Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).
В окружности с центром в точке О проведены диаметры AD и BC, угол
OAB равен 65°. Найдите величину угла OCD.
На клетчатой бумаге с размером клетки 1см х 1см отмечены точки A, B и C. Найдите расстояние от точки A до середины отрезка BC. Ответ выразите в сантиметрах.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
Комментарии: