В трапеции ABCD известно, что AB=CD, ∠BDA=38° и ∠BDC=32°. Найдите угол ABD. Ответ дайте в градусах.
Трапеция ABCD
равнобедренная, так как AB=CD.
Следовательно, по второму свойству равнобедренной трапеции:
∠BAD=∠CDA=∠BDA+∠BDC=38°+32°=70°
Рассмотрим треугольник ABD.
По
теореме о сумме углов треугольника:
180°=∠BAD+∠BDA+∠ABD
180°=70°+38°+∠ABD
∠ABD=180°-70°-38°=72°
Ответ: 72
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Радиус окружности, описанной около равностороннего треугольника, равен 10√3. Найдите длину стороны этого треугольника.
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=5, AC=45.
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 80°. Найдите меньший угол параллелограмма.
Комментарии: