В прямоугольном треугольнике один из катетов равен 7, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
По
теореме о сумме углов треугольника можно вычислить третий угол, он равен 180°-90°-45°=45°.
Следовательно, этот треугольник
равнобедренный (по первому
свойству).
Т.е. катеты этого треугольника равны.
Площадь
прямоугольного треугольника = ab/2, где а и b - катеты. Тогда:
Sтреугольника=7*7/2=24,5
Ответ: Sтреугольника=24,5
Поделитесь решением
Присоединяйтесь к нам...
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведённую к гипотенузе.
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Комментарии: