ОГЭ, Математика. Геометрия: Задача №E77CF5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №E77CF5

Задача №245 из 1087
Условие задачи:

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 130°.

Решение задачи:

Проведем отрезок ОА.
/DOA - центральный угол для данной окружности. Он опирается на дугу AD, равную 130°. Следовательно, /DOA тоже равен 130°.
/AOC - смежный углу DOA, поэтому /AOC=180°- /DOA=180°-130°=50°.
Треугольник ACO - прямоугольный, т.к. радиус всегда перпендикулярен касательной (по свойству касательной). Т.е. /ОАС=90°. Применяя теорему о сумме углов треугольника, можем записать:
180°=/AСO+/CAO+/AOC.
/AСO=180°-/CAO-/AOC=180°-90°-50°=40°.
Ответ: /ACO=40°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №130F15

Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 15 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 8 м. Найдите длину троса.



Задача №0A1BF0

Укажите номера верных утверждений.
1) Диагонали любого прямоугольника равны.
2) Если в треугольнике есть один острый угол, то этот треугольник остроугольный.
3) Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.



Задача №0FF56A

Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 14°. Ответ дайте в градусах.



Задача №9B73AE

Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°, то эти прямые параллельны.
3) Площадь треугольника не превышает произведения двух его сторон.



Задача №307BE5

В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о сумме углов треугольника.
Сумма углов треугольника равна 180°.

α+β+γ=180°
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика