В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
Рассмотрим треугольник ABH.
Это
прямоугольный треугольник, так как BH -
высота.
Тогда, по теореме о сумме углов треугольника:
180°=∠ABH+∠AHB+∠BAH
∠BAH=∠BAC=37° (так как это один и тот же угол).
180°=∠ABH+90°+37°
180°-90°-37°=∠ABH
∠ABH=53°
Ответ: 53
Поделитесь решением
Присоединяйтесь к нам...
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
Стороны AC, AB, BC треугольника ABC равны 2√
Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.
В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 163°. Найдите угол C. Ответ дайте в градусах.
Комментарии: