ОГЭ, Математика. Геометрия: Задача №EC4EC3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EC4EC3

Задача №99 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Против большей стороны треугольника лежит меньший угол", это утверждение неверно, т.к. противоречит теореме о соотношении углов и сторон.
2) "Любой квадрат можно вписать в окружность", это утверждение верно, т.к. четырехугольник можно вписать в окружность, если сумма противоположных углов этого четырехугольника равна 180°.
3) "Площадь трапеции равна произведению средней линии на высоту", это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FC502C

Пол комнаты, имеющей форму прямоугольника со сторонами 4 м и 10 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 5 см и 20 см. Сколько потребуется таких дощечек?



Задача №CE92B7

Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №EE3D1E

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 155°. Найдите угол C. Ответ дайте в градусах.



Задача №10CC4F

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.



Задача №1EE527

В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика