Периметр треугольника равен 50, одна из сторон равна 20,
а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=50/2=25
S=r*p=4*25=100
Ответ: 100
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.
Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).
Комментарии:
(2024-04-15 22:12:16) : Периметр треугольника равен 18, одна из сторон равна 7, а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.
(2024-04-15 22:10:49) амина: Периметр треугольника равен 18, одна из сторон равна 7, а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.