Периметр треугольника равен 50, одна из сторон равна 20,
а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=50/2=25
S=r*p=4*25=100
Ответ: 100
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна
338√
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Комментарии: