ОГЭ, Математика. Геометрия: Задача №099B7F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №099B7F

Задача №896 из 1087
Условие задачи:

Периметр треугольника равен 50, одна из сторон равна 20, а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.

Решение задачи:

По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=50/2=25
S=r*p=4*25=100
Ответ: 100

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №09252F

Площадь прямоугольного треугольника равна 3383/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №67E364

В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.



Задача №FF0BCC

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №005D56

Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.



Задача №EE565F

Косинус острого угла A треугольника ABC равен . Найдите sinA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика