Радиус окружности, описанной около квадрата, равен 14√
Проведем диаметры
описанной окружности, как показано на первом рисунке.
Очевидно, что
квадрат разделился на 4 равных треугольника, углы, которые опираются на центр окружности (О), равны 360°/4=90°, т.е. эти треугольники
прямоугольные.
Тогда, по теореме Пифагора:
AB2=R2+R2
AB2=2R2
AB2=2(14√
AB2=2*142*2
AB2=142*22=(14*2)2=282
AB=28
Проведем радиус
вписанной окружности, как на втором рисунке.
Очевидно, что:
r=AB/2=28/2=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол параллелограмма.
Проектор полностью освещает экран A высотой 100 см, расположенный на расстоянии 230 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 320 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?
Какой угол (в градусах) описывает часовая стрелка за 2 часа 16 минут?
Площадь прямоугольного треугольника равна 2√
Радиус вписанной в квадрат окружности равен 4√2. Найдите диагональ этого квадрата.
Комментарии: