Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
По
теореме о касательно и секущей:
AK2=AB*AC
AK2=4*64
AK2=256
AK=√
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=79 и BC=BM. Найдите AH.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
Радиус окружности с центром в точке O равен 50, длина хорды AB равна 96 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.
Комментарии:
(2022-04-01 03:27:21) мария: Радиус окружности, вписанной в трапецию, равен 18. Найдите высоту этой трапеции
(2021-04-01 23:34:01) марк: в треугольнике авс угол с равен 90 градусо
(2021-02-13 17:11:07) ааа: Тут + вместо умножения должен быть