ОГЭ, Математика. Геометрия: Задача №649B05 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №649B05

Задача №854 из 1087
Условие задачи:

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.

Решение задачи:

Проведем высоты BE и CF как показано на рисунке.
Рассмотрим треугольник CDF. Он прямоугольный, т.к. CF-высота.
По теореме о сумме углов треугольника ∠FCD=180°-90°-60°=30°. По определению синуса sin∠FCD=DF/CD=sin30°=1/2
Т.е. DF=CD/2, CD, в свою очередь, по условию задачи равно AD/2, получам, что DF=AD/4.
BC=AD/2 (по условию задачи)
EF=BC=AD/2 (т.к. BCFE - прямоугольник)
Вычислим AE, AE=AD-DF-EF=AD-AD/4-AD/2=AD/4, т.е. мы получили, что AE=FD
Рассмотрим треугольники ABC и DCF:
BE=CF (т.к. BCFE - прямоугольник)
AE=FD (только что получили)
∠AEF=90°=∠DFC, тогда по первому признаку равенства, треугольники ABC и DCF равны.
Следовательно, AB=CD, т.е. наша трапеция равнобедренная.
AB=CD=4 (по условию задачи), AD=2*CD=2*BC=8 (тоже по условию), BC=CD=4
FD=AD/4=2
По теореме Пифагора CD2=CF2+FD2
42=CF2+22
CF2=12, CF=12
CF=23
SABCD=((BC+AD)/2)*CF=((4+8)/2)*23
SABCD=123
Ответ: 123

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №02B517

Прямые m и n параллельны. Найдите ∠3, если ∠1=22°, ∠2=72°. Ответ дайте в градусах.



Задача №4F0B29

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.



Задача №EECCA2

Катеты прямоугольного треугольника равны 26 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №D13381

На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E . Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.



Задача №DFC557

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика