На окружности с центром в точке O отмечены точки A и B так, что ∠AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги AB.
∠AOB является центральным, поэтому градусная мера дуги, на которую он опирается тоже равна 66°.
Так как градусная мера всей окружности составляет 360°, то градусная мера большей дуги равна:
360°-66°=294°
Теперь систавим пропорцию:
Для 66° - длина дуги 99
Для 294° - длина дуги x
66/294=99/x
x=294*99/66=294*1,5=441
Ответ: 441
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна 78√
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
В треугольнике ABC угол C равен 90°, sinB=5/8, AB=16. Найдите AC.
В трапеции ABCD AB=CD, ∠BDA=49° и ∠BDC=13°. Найдите угол ABD. Ответ дайте в градусах.
Комментарии: