ОГЭ, Математика. Геометрия: Задача №B91F47 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №B91F47

Задача №834 из 1084
Условие задачи:

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.

Решение задачи:

По условию задачи ВМ - медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
SABК=SAKM=(SABM)/2=(SABC)/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC. SCKP=(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)SCKB=(2/12)SABC =(1/6)SABC.
SKPCM=SCMK+SCKP=(SABC)/4+(1/6)SABC=(5/12)SABC.
SABC/SKPCM=12/5.
Ответ: SABC/SKPCM=12/5=2,4.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №06FCF6

Боковые стороны AB и CD трапеции ABCD равны соответственно 18 и 30, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №85BF87

В треугольнике ABC известно, что ∠BAC=64°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.



Задача №401C56

Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.



Задача №11D7EC

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №F92A32

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика