ОГЭ, Математика. Геометрия: Задача №DFAAD8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Решение прислал пользователь Людмила
Проведем из прямого угла медиану и высоту, обозначив их m и h соответственно.
Если описать окружность вокруг треугольника, то центр этой окружности будет лежать на середине гипотенузы (по теореме об описанной окружности). Следовательно:
m=c/2=48/2=24
S=(1/2)hc
h=2S/c=2*288/48=288/24=12
По определению синуса:
sinβ=h/m=12/24=0,5
По таблице определяем, что β=30°
Угол γ является внешнем к β, следовательно γ=180°-β=180°-30°=150°
Треугольник, содержащий угол γ, равнобедренный, так как медиана m и половина гипотенузы равны (это мы выяснили ранее).
Следовательно, по свойству равнобедренного треугольника углы при основании равны (обозначены α).
Тогда, по теореме о сумме углов треугольника:
180°=γ+α+α
180°=150°+2α
α=15° - это один из искомых углов.
Другой искомый угол найдем по той же теореме об углах треугольника: 180°-90°-15°=75°
ответ: 15° и 75°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04BBC9

Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.



Задача №B711E6

В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ равны.



Задача №2EB3D5

В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.



Задача №82E915

Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.



Задача №983824

Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика