ОГЭ, Математика. Геометрия: Задача №1C7299 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1C7299

Задача №829 из 1087
Условие задачи:

В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.

Решение задачи:

Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED - прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это соответственные углы)
Треугольники AED и BEC подобны (по первому признаку подобия треугольников).
Тогда по определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
33/11=(20+BE)/BE
3=(20+BE)/BE
3BE=20+BE
2BE=20
BE=10
Точка F - точка касания прямой CD и окружности.
По теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=10(20+10)=300
EF=300
Рассмотрим треугольник EOK.
О - центр окружности
OB - радиус окружности
OK - серединный перпендикуляр к хорде AB ( третье свойство хорды)
OK=EF (т.к. KEFO - прямоугольник)
KB=AB/2 (т.к. OK - серединный перпендикуляр)
По теореме Пифагора:
OB2=OK2+KB2
OB2=(300 )2+(20/2)2
OB2=300+100=400
OB=20=R
Ответ: 20

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FC7964

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.



Задача №0CD22D

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №25EF8F

В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.



Задача №EA6181

Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.



Задача №061DDF

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика