В треугольнике ABC угол C равен 90°, BC=6, sinA=0,6. Найдите AB.
По
определению синуса:
sinA=ВС/АВ=6/АВ=0,6.
АВ=6/0,6=10.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Найдите площадь треугольника, изображённого на рисунке.
В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: