В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=169°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Обозначим точку пересечения диагоналей как О.
По
свойству
параллелограмма AO=OC=AC/2.
AB=CD (по
другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD -
равнобедренный.
По
свойству равнобедренного треугольника ∠COD=∠CDO.
По
теореме о сумме углов треугольника: 180°=∠COD+∠CDO+∠ACD=∠COD+∠CDO+169°
∠COD+∠CDO=11°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=11°/2=5,5°
∠COD - острый угол между диагоналями.
Следовательно,
∠COB=180°-∠COD=180°-5,5°=174,5° (т.к. это
смежные углы) - тупой угол между диагоналями.
Ответ: острый угол между диагоналями параллелограмма (∠COD) равен 5,5°, тупой угол между диагоналями равен 174,5°
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 40°. Найдите больший угол параллелограмма.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Комментарии: