ОГЭ, Математика. Геометрия: Задача №8D1B00 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №8D1B00

Задача №794 из 1087
Условие задачи:

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC/AB=6/5.
AM=AC/2 => AC=2AM
Подставляем это значение AC в равенство AC/AB=6/5:
2AM/AB=6/5
AM/AB=6/10=3/5
AM/AB=KM/BK=3/5
KM=3/5*BK
Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*(3/5*BK)=3/5*(1/2*h*BK)=3/5*SABK (т.к. высота h для этих треугольников общая)
SABK=5/3*SAKM
SABK+SAKM=SABM=SABC/2
5/3*SAKM+SAKM=SABC/2
8/3*SAKM=SABC/2
SAKM=3/16*SABC
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=6/5 (по условию задачи), следовательно, CP=6/5*PB
SAPC=1/2*h*CP=1/2*h*(6/5*PB)=6/5*(1/2*h*PB)=6/5*SABP,
SABP+SAPC=SABC
SABP+6/5*SABP=SABC
11/5*SABP=SABC
SABP=5/11*SABC
SKPCM=SABC-SABP-SAKM=SABC-5/11*SABC-3/16*SABC=176/176*SABC-80/176*SABC-33/176*SABC=63/176*SABC
Отношение SAKM к SKPCM равно (3/16*SABC)/(63/176*SABC)=(3/16)/(63/176)=(3*176)/(16*63)=(3*11)/(63)=11/21
Ответ: 11/21

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №151F1A

В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 132°. Найдите вписанный угол ACB. Ответ дайте в градусах.



Задача №A37D67

Какие из следующих утверждений верны?
1) Средняя линия трапеции равна сумме её оснований.
2) Диагонали ромба перпендикулярны.
3) Площадь треугольника меньше произведения двух его сторон.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.



Задача №04E270

Сторона равностороннего треугольника равна 103. Найдите его биссектрису.



Задача №77ED1F

Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №07AA72

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика