Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Рассмотрим каждое утверждение:
1) "Все углы ромба равны". Ромб, у которого все углы равны - это уже
квадрат. Не каждый
ромб является
квадратом, следовательно данное утверждение неверно.
2) "Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны" - это утверждение неверно. Можно привести простой пример:
квадрат и
ромб с равными сторонами - стороны равны, а четырехугольники не равны.
3) "Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности" - это утверждение верно по
второму свойству касательной.
Ответ: 3)
Поделитесь решением
Присоединяйтесь к нам...
На отрезке AB выбрана точка C так, что AC=60 и BC=27. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
Площадь прямоугольного треугольника равна 50√
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.
Комментарии: