В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=3 и CH=1. Найдите cosB.
Треугольник ABH
прямоугольный (т.к. AH -
высота).
Тогда cosB=BH/AB (по
определению).
AB=BC (по условию).
BC=BH+CH=3+1=4=AB
cosB=BH/AB=3/4=0,75
Ответ: 0,75
Поделитесь решением
Присоединяйтесь к нам...
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.
В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E . Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.
Комментарии: