Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.
Для удобства введем обозначения:
a - сторона
ромба (они равны по
определению ромба)
d - диагональ AC
57d - диагональ BD (по условию)
AE - k
EB - t
Площадь
параллелограмма через диагонали равна BD*AC*sinα/2 = 57d*d*sinα/2 = 28,5d2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу).
Так как стороны
ромба параллельны диагоналям, образуется маленький
параллелограмм, а значит противоположные углы равны (по
свойству параллелограмма).
Рассмотрим треугольники ABC и EBF.
∠EBF - общий
∠BFE=∠BCA (это
соответственные углы)
Следовательно, треугольники ABC и EBF
подобны (по
первому признаку подобия).
Тогда EF/AC=a/d=t/(t+k)
Аналогично,
подобны и треугольники ABD и AEH.
Для них справедливо: a/57d=k/(t+k)
Складываем эти два уравнения:
a/d+a/57d=t/(t+k)+k/(t+k)
57a/57d+a/57d=(t+k)/(t+k)
58a/57d=1
58a=57d
a=57d/58
Sромба=a2sinα
Sпараллелограмма=28,5d2*sinα (это мы выяснили ранее)
Sромба/Sпараллелограмма=(a2sinα)/(28,5d2*sinα)=a2/(28,5d2)=(57d/58)2/(28,5d2)=(572*d2)/(582*28,5*d2)=3249/(3364*28,5)=114/3364=57/1682
Ответ: 57/1682
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
Комментарии: