Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №2D06EF

Задача №685 из 1084
Условие задачи:

Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.

Решение задачи:

Расстояние от точки О до прямых - это длина перпендикуляра, проведенного от точки до прямой. Иными словами, надо доказать, что ON=OM=OK.
Рассмотрим треугольник NBO.
sin∠NBO=ON/OB (по определению синуса).
ON=OB*sin∠NBO
Рассмотрим треугольник BMO.
sin∠OBM=OM/OB (по определению синуса).
OM=OB*sin∠OBM
∠NBO=∠OBM (т.к. OB - биссектриса).
Следовательно, OM=OB*sin∠OBM=OB*sin∠NBO=ON
Аналогично доказывается, что OK=OM.
Т.е. ON=OM=OK.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №EC57DB

Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 5.

Задача №02D3B8

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.

Задача №6606B6

Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.

Задача №8C32FA

Найдите площадь трапеции, изображённой на рисунке.

Задача №0247D6

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика