Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=24°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 24°*2=48°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=48°.
Ответ: /AOB=48°.
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 75°. Найдите величину угла OAB.
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
Найдите площадь трапеции, изображённой на рисунке.
Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.
Комментарии: