Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=24°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 24°*2=48°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=48°.
Ответ: /AOB=48°.
Поделитесь решением
Присоединяйтесь к нам...
Стороны AC, AB, BC треугольника ABC равны 3√
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что
∠NBA=60°. Найдите угол NMB. Ответ дайте в градусах.
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
Комментарии: