Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=102+82
AO2=100+64=164
AO=164
AB2=92+12
AB2=81+1=82
AB=82
BO2=92+12
BO2=81+1=82
BO=82
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(82 )2=(164 )2+(82)2-2*164*82*cos∠AOB
82=164+82-2164*82*cos∠AOB
-164=-213448*cos∠AOB
82=4*3362*cos∠AOB
82=241*82*cos∠AOB
41=41*82*cos∠AOB
cos∠AOB=41/41*82=(41)2/41*82=41/82=41/41*2= 1/2
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(1/2)2=1
sin2∠AOB+1/2=1
sin2∠AOB=1/2
sin∠AOB=1/2
tg∠AOB=sin∠AOB/cos∠AOB=(1/2)/(1/2)=1
Ответ: tg∠AOB=1


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=9/1=9
2) Для красного треугольника: tgβ=8/10=0,8
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(9-0,8)/(1+9*0,8)=8,2/8,2=1
Ответ: tg∠AOB=1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №A5F365

В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Задача №219FAC

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.

Задача №826365

Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите BC, если AB=26.

Задача №50A4DC

В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.

Задача №53152C

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика