ОГЭ, Математика. Геометрия: Задача №07378B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем высоту CF.
Рассмотрим треугольники ABE и DCF.
∠BAE=∠CDF=45° (по свойству равнобедренной трапеции).
∠BEA=∠CFD=90° (так как BE и CF - высоты).
Используя теорему о сумме углов треугольника, получаем, что: ∠EBA=∠FCD
AB=CD (по определению равнобедренной трапеции).
Следовательно, данные треугольники равны (по второму признаку равенства треугольников).
Значит, AE=FD.
Рассмотрим треугольник ABE.
По определению tg∠BAE=BE/AE
tg45°=5/AE=1 (по таблице)
AE=5
EF=BC=6 (так как BCFE - прямоугольник)
AD=AE+EF+FD=5+6+5=16
Ответ: AD=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D8DE10

В треугольнике ABC известно, что AB=6, BC=10, sin∠ABC=1/3. Найдите площадь треугольника ABC.



Задача №002D6D

Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.



Задача №25EF8F

В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.



Задача №92C757

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.



Задача №0CC927

В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика