AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Рассмотри треугольник OCB.
OB=OC (т.к. это радиусы)
Следовательно, треугольник OCB -
равнобедренный.
Тогда ∠ACB=∠CBD=74° (по
свойству равнобедренного треугольника).
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBD+∠BOC
180°=74°+74°+∠BOC
∠BOC=32°
∠BOC=∠AOD=32° (т.к. они
вертикальные).
Ответ: 32
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 14√
Найдите площадь трапеции, изображённой на рисунке.
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=20, CD=48, а расстояние от центра окружности до хорды AB равно 24.
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.
Комментарии: