Высота равностороннего треугольника равна 96√
AB=BC=AC (т.к. треугольник
равносторонний)
Периметр равен: P=AB+BC+CA=3AC
AH -
высота, по
свойству равностороннего треугольника, она так же является и
медианой, и
биссектрисой.
Следовательно, BH=CH=BC/2=AC/2
По
теореме Пифагора:
AC2=AH2+CH2
AC2=AH2+(AC/2)2
AC2-AC2/4=(96√
3*AC2/4=962*3
AC2/4=962
AC2=(2*96)2
AC=2*96=192
P=3AC=3*192=576
Ответ: P=576
Поделитесь решением
Присоединяйтесь к нам...
Человек, рост которого равен 1,6 м, стоит на расстоянии 17 м от уличного фонаря. При этом длина тени человека равна 8 м. Определите высоту фонаря (в метрах).
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=19.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
На отрезке AB выбрана точка C так, что AC=12 и BC=3. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Комментарии: