Высота равностороннего треугольника равна 96√
AB=BC=AC (т.к. треугольник
равносторонний)
Периметр равен: P=AB+BC+CA=3AC
AH -
высота, по
свойству равностороннего треугольника, она так же является и
медианой, и
биссектрисой.
Следовательно, BH=CH=BC/2=AC/2
По
теореме Пифагора:
AC2=AH2+CH2
AC2=AH2+(AC/2)2
AC2-AC2/4=(96√
3*AC2/4=962*3
AC2/4=962
AC2=(2*96)2
AC=2*96=192
P=3AC=3*192=576
Ответ: P=576
Поделитесь решением
Присоединяйтесь к нам...
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, вписанной в этот треугольник.
Найдите угол ABC. Ответ дайте в градусах.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.
Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.
Комментарии: